Correlation Effects and the Bonding and Cr–C Bond Strength in Cr(CO)₆

David Moncrieff,^a Peter C. Ford,^a Ian H. Hillier,^{*a} and Victor R. Saunders^b

^a Chemistry Department, University of Manchester, Manchester M13 9PL, U.K. ^b S.E.R.C., Daresbury Laboratory, Warrington WA4 4AD, U.K.

A large-scale *ab initio* configuration interaction calculation of Cr(CO)₆ shows the importance of correlation effects in describing the charge distribution and in predicting the Cr–C bond strength in this molecule.

The metal-carbon bond in transition metal carbonyls is usually discussed in terms of σ -donation from the highest filled (5 σ) molecular orbital (MO) of CO and π -back-bonding into the first virtual MO (2 π) of the ligand. Such a description has been confirmed and quantified by *ab initio* MO calculations at the single determinantal (Hartree Fock) level.^{1,2} Our initial calculation¹ on Ni(CO)₄ and Cr(CO)₆ revealed a net negative charge on the CO ligand, as did subsequent larger basis set calculations.² However, to date, no calculation of a well characterized transition metal carbonyl which included correlation effects has been reported, although such calculations on the species NiCO have been described.³

To assess the importance of electron correlation in the description of the metal-ligand binding in transition metal carbonyls, we here describe a configuration interaction (CI) calculation of $Cr(CO)_6$, together with an analysis of the resulting multi-determinantal wavefunction.

The calculation was carried out in a basis of Gaussian functions. For carbon and oxygen a (9s5p) basis contracted to (3s2p) was used.⁴ For chromium a (12s6p4d) basis contracted to (4s2p2d)⁵ was supplemented by additional s and p functions of exponent 0.4, together with a diffuse d function of exponent 0.0972.6 The chromium basis was thus (5s3p3d), resulting in a total of 137 contracted Gaussian functions for the molecular calculation. A calculation of the ¹A_{1g} ground state of $Cr(CO)_6$, at the experimental molecular geometry,⁷ within the Hartree Fock (HF-SCF) approximation resulted in a calculated molecular energy of -1717.2739 a.u., considerably lower than the value obtained previously.¹ A Mulliken analysis of this wavefunction is shown in Table 1, and compared with that from a calculation of the CO molecule, in the same Gaussian basis, at the experimental bond length. From these atomic populations the considerable $3d(t_{2g}) \rightarrow CO(\pi^*)$ and smaller $CO(\sigma) \rightarrow 3d(e_{\sigma})$ electron transfer are evident

Table 1. Calculated cha	rge distribution in Cr	(CO)6 and CO.a
	HF-SCF	CI
Chromium orbital		
4s	0.191	0.194
4p	0.017	0.017
$3d(t_{2g})$	5.058	4.938
$3d(e_g)$	0.660	0.700
Atomic charge	+0.134	+0.212
Carbon orbital		
2pπ	1.125 (0.955)	1.214 (1.078)
2 pσ	1.021 (1.028)	1.016 (1.024)
Atomic charge	+0.238 (+0.354)	+0.160 (+0.242)
Oxygen orbital		
2pπ	3.075 (3.045)	3.012 (2.935)
2pσ	1.348 (1.492)	1.345 (1.490)
Atomic charge	-0.260 (-0.354)	-0.195 (-0.242)

^a The values for CO are given in parentheses.

resulting in a net ligand charge of -0.022e in the complex. From the calculated molecular energies for Cr(CO)₆ and CO, and the calculated energy of Cr(⁷S), a Cr–C bond strength of 72 kJ mol⁻¹ is obtained, to be compared with the experimental value of 107 kJ mol⁻¹.⁸

A restricted amount of electron correlation was then included by carrying out a CI calculation using configurations generated by single and double excitations from the HF wavefunction. The active MOs in this CI expansion were those derived from the Cr[$3d(t_{2g}),3d(e_g),4s$] and CO($5\sigma,1\pi,6\sigma,2\pi$) orbitals. The CI expansion thus included 42 active electrons and resulted in *ca*. 49000 configurations. The calculation was carried out using the direct CI method⁹ on the CDC 7600 of the University of Manchester Regional Computing Centre. This calculation yielded a correlation energy of 0.4166 a.u., the HF-SCF configuration contributing only 78% to the final CI wavefunction, thus showing the importance of including correlation effects. A Mulliken analysis of this CI wavefunction, obtained via the natural orbitals, is shown in Table 1, where it is compared with that from the corresponding CI calculation on free CO. A comparison between the SCF and CI atomic populations and charges shows that significant charge redistribution occurs upon the inclusion of correlation. In particular the $3d(t_{2g})$ population is decreased and the $3d(e_g)$ population is increased, leading to an increase in the chromium formal charge from +0.134e to +0.212e. There is an associated increase in the charge on each ligand from -0.022eat the SCF level to -0.035e upon inclusion of correlation, owing to an increase in the π -population of each ligand of 0.03e. Thus the degree of both π -back bonding and σ -donation is increased upon the inclusion of correlation. This is reflected in an increase in the calculated Cr-C bond strength to 140 kJ mol⁻¹ when the CI wavefunction is used. Although this value is now somewhat larger than the experimental value (107 kJ mol⁻¹), which may be attributed to superposition errors, the calculation described herein demonstrates the importance of including correlation effects for a quantitative description of the electronic structure of transition metal carbonyls.

Received, 24th June 1983; Com. 840

References

- 1 I. H. Hillier and V. R. Saunders, Mol. Phys., 1971, 22, 1025.
- 2 J. Demuynck and A. Veillard, Theor. Chim. Acta, 1973, 28, 241.
- A. B. Rives and R. F. Fenske, J. Chem. Phys., 1981, 75, 1293;
 P. S. Bagus and B. O. Roos, *ibid.*, 1981, 75, 5961; S. P. Walch and W. A. Goddard III, J. Am. Chem. Soc., 1976, 98, 7908.
- 4 T. H. Dunning, J. Chem. Phys., 1970, 53, 2823.
- 5 B. Roos, A. Veillard, and G. Vinot, *Theor. Chim. Acta*, 1971, **20**, 1.
- 6 P. J. Hay, J. Chem. Phys., 1977, 66, 4377.
- 7 'Tables of Interatomic Distances and Configurations in Molecules and Ions,' Chem. Soc. Spec. Publ. No. 11, The Chemical Society, London, 1958.
- 8 D. A. Pittam, G. Pilcher, D. S. Barnes, H. A. Skinner, and P. Todd, J. Less-Common Metals, 1975, 42, 217.
- 9 B. O. Roos, Chem. Phys. Lett., 1972, 15, 153; V. R. Saunders and J. H. Van Lenthe, Mol. Phys., 1983, 48, 923.